Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482769

RESUMO

Background selection describes the reduction in neutral diversity caused by selection against deleterious alleles at other loci. It is typically assumed that the purging of deleterious alleles affects linked neutral variants, and indeed simulations typically only treat a genomic window. However, background selection at unlinked loci also depresses neutral diversity. In agreement with previous analytical approximations, in our simulations of a human-like genome with a realistically high genome-wide deleterious mutation rate, the effects of unlinked background selection exceed those of linked background selection. Background selection reduces neutral genetic diversity by a factor that is independent of census population size. Outside of genic regions, the strength of background selection increases with the mean selection coefficient, contradicting the linked theory but in agreement with the unlinked theory. Neutral diversity within genic regions is fairly independent of the strength of selection. Deleterious genetic load among haploid individuals is underdispersed, indicating nonindependent evolution of deleterious mutations. Empirical evidence for underdispersion was previously interpreted as evidence for global epistasis, but we recover it from a non-epistatic model.


Assuntos
Variação Genética , Seleção Genética , Humanos , Mutação , Genoma Humano , Alelos , Modelos Genéticos
2.
bioRxiv ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37732183

RESUMO

Each new human has an expected Ud = 2 - 10 new deleterious mutations. This deluge of deleterious mutations cannot all be purged, and therefore accumulate in a declining fitness ratchet. Using a novel simulation framework designed to efficiently handle genome-wide linkage disequilibria across many segregating sites, we find that rarer, beneficial mutations of larger effect are sufficient to compensate fitness declines due to the fixation of many slightly deleterious mutations. Drift barrier theory posits a similar asymmetric pattern of fixations to explain ratcheting genome size and complexity, but in our theory, the cause is Ud > 1 rather than small population size. In our simulations, Ud ~2 - 10 generates high within-population variance in relative fitness; two individuals will typically differ in fitness by 15-40%. Ud ~2 - 10 also slows net adaptation by ~13%-39%. Surprisingly, fixation rates are more sensitive to changes in the beneficial than the deleterious mutation rate, e.g. a 10% increase in overall mutation rate leads to faster adaptation; this puts to rest dysgenic fears about increasing mutation rates due to rising paternal age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...